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For many engineering and aerospace applications, detection and quantification of multiscale damage in fiber-

reinforced composite structures is increasing in importance. Consequently, the development of an efficient and cost-

effective diagnosis scheme that can accurately sense, characterize, and evaluate the existence of any form of damage

will offer significant potential for improving the performance, reliability, and extending the operational life of these

complex systems. We present an approach to characterize and classify different damage states in composite

laminates by measuring the change in the signature of the resultant wave that propagates through the anisotropic

media under forced excitation. Thewave propagation is measured using surface-mounted piezoelectric transducers.

Sensor signals collected from test specimens with various forms of induced damage are analyzed using a pattern-

recognition algorithm known as the one-class support vector machines. The one-class support-vector-machine

algorithm performs automatic anomaly detection and classification of damage signatures using various features

from the sensor readings. The results obtained suggest that the one-class support-vector-machine algorithm, along

with appropriate preprocessing techniques, can often achieve better accuracy than the popular k-nearest-neighbor

method in detecting and classifying anomalies caused by structural defects, even when the perturbations caused in

the sensor signals due to different damage states are minimal.

Nomenclature

f�x� = decision function
K�x;xj� = inner product kernel
Rij = matrix with correct classification rate
w = weight vector
w�n� = random noise
xi = input pattern
yi = label
�i = Lagrangian multipliers
� = slack variable
� = bias
� = time delay
� = kernel width

I. Introduction

S TRUCTURAL health monitoring (SHM) comprises the key
tasks of developing a diagnosis and prognosis methodology that

integrates multiscale modeling with advanced sensing technology
and data interrogation procedures to efficiently provide information

on both damage severity through the entire structure and localized
damage patterns for structural members in a complex system.

High-performance lightweight composites and other multifunc-
tional materials are becoming increasingly popular in many
engineering applications. However, composites are also associated
with complex forms of damage, and reliability is a critical issue
because such defects may compromise the integrity of structures
and lead ultimately to structural failure. In composites, damage may
nucleate when subjected to fatigue, overloading, and low- and high-
velocity impact. These forms of damage not only affect the way in
which the structure responds to applied loads, but may also lead to
catastrophic system failure under certain environmental conditions.
In general, damage detection systems with built-in diagnosis can be
of the passive-sensing type or the active-sensing type with built-in
diagnostics [1,2].

Recently, in situ health monitoring using piezoelectric sensors has
been addressed in several publications [3–5]. A comprehensive
literature review of damage detection and healthmonitoringmethods
for structural andmechanical systemswasprovidedbyDoebling et al.
[6], Chang [7,8], andDiamanti et al. [9,10]. Because damage features
interact with structural features, it gives rise to numerous physical
phenomena as an indicator of degradation before catastrophic failure.
The presence of multiscale defects in composites, coupled with the
inherent anisotropyof thematerial,makesdetectionandclassification
of this damage a more challenging task.

The motivation of this research is to investigate the characteristics
of sensor signals in composites with various forms of induced
damage and to use a novel anomaly-detection algorithm, to classify
the damage. The present work implements active monitoring, in
which embedded or surface-mounted actuators are used to excite
the structure at certain frequency bands and a distributed sensing
architecture is used to sense the mechanical response and convert
the mechanical energy into equivalent voltage output. The input
actuation can be tuned such that the resultant wave field is in the form
of guided waves, which have been proven to be useful in detecting
underlying defects or discontinuities [11,12].
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The rest of this paper is organized in six sections. A detailed
literature review on pattern-recognition techniques has been reported
in Sec. II. Section III illustrates some of the potential applications of
support vector machines (SVMs) in systems health management and
the scope of our current study. Section IV describes themathematical
foundation of SVMs, with some special emphasis on the unique
features of one-class SVMs, followed by some details on the
optimization algorithm. SectionV describes some of the applications
of one-class SVMs in structural diagnostics and some details of the
conducted experiments. A summary of the observations and some
concluding remarks are also presented in final section.

II. Data-Driven Approaches to Systems
Health Management

Pattern recognition of structural defects aims to assign a certain
damage pattern to one of the recommended set of damage categories.
The most popular techniques in pattern recognition can be broadly
categorized as a physics-based model and a data-driven model, also
known as the machine-learning approach. It is self-explanatory that
the former technique is based on the fundamental understanding of
the physics of the system. The prior knowledge of the process is
represented in terms of quantitative or qualitative functional rela-
tionships and often dictates the approach to developing such models.
A good survey on various physics-based diagnostic models can be
obtained in the following literature [13–15].

Data-driven approaches rely on the use of historical data sets to
train the model on nominal system behavior. Under unsupervised-
learning techniques, the basic assumption is that the process has
adequate knowledge of the nominal behavior of the system under
investigation and that any offnominal behavior will be identified. In
this work, the system is trainedwith the features extracted from those
data sets that characterize the nominal behavior of the system and are
considered as observed features. When new data are fed in, any sort
of deviations or mismatches from those already observed in the
training data are considered to be outliers or abnormalities. There are
several existing approaches for the identification of surprise events
in waveforms based on unsupervised machine-learning techniques
[16–19]. Bay and Schwabacher [16] and Schwabacher [17]
described an unsupervised method that works on both discrete and
continuous data streams. This method is based on the nearest-
neighbor approach but uses a novel pruning rule to obtain near-
linear-time performance. In [18], Iverson demonstrated the inductive
monitoring system (IMS) method, which is well suited to analyzing
continuous data streams. IMS clusters the training data into sub-
sets with consistent system parameters and thereafter builds the
knowledge of nominal behaviors based on the data obtained either
directly from the system or system model.

On the other hand, supervised-learning techniques rely on having
a set of examples from each category of failure signatures to
characterize different failure modes of the system. It is assumed that
the given patterns or signals have already been classified by a human
expert into m of n categories, based on some prior knowledge.
These categories correspond to individual failure modes. Then the
developed model such as a neural network, SVMs, or a decision tree
learns the relationship between the input patterns or signals and the
failure categories. This learning amounts to the estimation of a set of
parameters of the model to maximize the classification accuracy.

Traditional techniques, such as k-nearest neighbor (k-NN) [20],
projection pursuit, etc., do not assume the underlying distribution
from which the training data are sampled. In the k-NN technique
[20], the training data consist of both the normal and abnormal
attributes of the measured data. A new test sample is evaluated by
calculating the distance to the training examples located close to
that point, and the labels of the close neighbors determine the
classification of that sample. Recently, research has also been
reported on the use of the matching pursuit decomposition (MPD)-
based techniques for classifying time-varying signals [21–23]. The
MPD classifiers have two levels of task. At the first level, the
objective is to obtain some distinctive feature components while
decomposing the signals in terms of the dictionary elements that are

chosen to match the time–frequency structures of the signal. At the
second level, the parameters of the extracted feature components are
then used to classify the signal based on some test statistics.

In [21], Varma et al. proposed anMPD-based technique to classify
time-varying acoustic signals of reinforced concrete structures. In
their research, the authors established the use of MPD as a pattern-
recognition tool and finally computed the classification rule based on
the net contribution of the correlation coefficient information for the
decomposed components from each class. The performance of the
proposed classifier is indeed superior for signals having unlike
patterns in time–frequency domain, but shows some drop in the
probability of correct classification as the time–frequency patterns
become more similar. Michaels et al. [24] conducted a comparative
study on the performance of feature-based-classifiers and demon-
strated some applications in SHM and nondestructive evaluation,
using the wave-based technique. In [24], the author adopted a
differential scheme (normal–abnormal) to compute the features in
the time, frequency, or joint time–frequency domain and to examine
the similarity measurement using the Fisher discriminant ratio. One
of the major conclusions made by the author is that the classifier
performance improves significantly with multiple input feature
vectors, when compared with a single input.

Among machine-learning techniques, neural-network-based
techniques for data-driven structural diagnosis and prognosis prob-
lems are well studied. During the training phase, the network is
presentedwith different patternswith their corresponding categories,
and then the high-dimensional decision space is divided into regions
corresponding to each category, based on the training examples. The
application of neural networks for characterizing vibration data of
rotating machinery and jet engines has been presented in [25–27].
The use of dynamic wavelet neural network architecture to carry
out fault prognosis of defective bearings has been reported by
Vachtsevanos and Wang [28]. A comprehensive literature review of
the data-driven prognostics approach can be found in [29].

III. Related Research Using Support Vector Machines

An alternative approach to pattern recognition is to develop a
machine-learning technique that constructs a decision boundary
based on the training data set or the predefined classes and then to
check the position of the given test point with respect to the reference
boundary. Recently, the SVM family has drawn considerable
attention in the field of fault detection and isolation in complex
systems. This is because the SVM algorithm has some powerful
properties, particularly when handling very high-dimensional input
data sets. The details of these properties will be explained in the later
sections. Some of the existing literature representing the variety of
applications using SVMs can be found in [30–36]. Zheng et al. [30]
addressed the issue of isolating sensor faults in electrical power
systems by implementing the support vector regression algorithm
that models individual sensor responses. The authors also used the
difference signal of the true and the corresponding modeled obser-
vations to build the residual classifier to isolate the sensor faults.
Axelberg et al. [31] addressed the use of SVMs to classify the voltage
transients due to the occurrences of multiple electrical faults. He and
Shi [32] introduced a combinatorial approach in which the detailed
and the approximate coefficients of the vibration signals after
wavelet decomposition had been used along with SVMs to monitor
the working condition of pump valves. The classification of defect
states of rotating machinery (ball bearings) has been investigated
by Worden and Lane [33]. This work uses the Fourier-transformed
information of the vibration data to construct the classifier. Zhi-qiang
et al. [34] demonstrated the use of the multiclass SVMs to determine
the condition of faulty gear samples. The performance of one-class-
SVM classifiers with different kernel functions and the influence of
varying training (data set) size have been studied by Shin et al. [35].
Yuan and Chu [36] proposed the one-to-others multiclass SVMs to
perform the fault diagnosis of turbopump rotors, and the structure
of the algorithm is similar to a binary tree with a two-class-
SVM classifier constructed at every node. A brief summary of the
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application of different pattern-recognition techniques for structural
health monitoring and damage detection is well documented in [37].

The overall objective of this research is to develop an automated
data-driven technique for damage signature classification, mainly
in composite structures. A database is established by conducting
experiments and collecting sensor data. Composite test coupons
with various types of externally induced damages such as
seeded delaminations, drilled holes, notches, saw cuts, etc., were
manufactured and data were collected using piezoelectric sensors.
When localized damage is induced in the structure, distinct feature
components of scattered waves are sensed by the neighboring
transducers [38]. The normal and abnormal attributes are extracted
from the measured data and are further analyzed to characterize
various states of the system.

In this paper,we have investigated the ability of one-class SVMs to
detect wave-based signatures of defects in sensor data under various
test cases.We have demonstrated that it is possible to test subsequent
data sets, once the diagnostic procedure is trained with nominal
sensor data, to examine the presence of features that are significantly
different from normal behavior. The current research also reveals the
practicality of using the delay coordinate approach [39] along with
SVMs to detect and localize the anomalous patterns in real-world
problems.

The SVMmodel is taught the dynamics of the system from a set of
scalar observations, further enabling the classifier to detect any
change in dynamic characteristics that have resulted due to faults that
may have occurred. One of the merits of this technique is that the
occurrences of the detected outliers can easily be represented as a
function of time, and therefore this method is capable of addressing
some of the localization issues, especially for time-series problems.
The final goal is to extract and separate the signature characteristics
of the sensor signals collected from samples with various types
of defects. In many cases, for a given sensor, the attributes shared
between two classes are very similar to each other. To handle this
problem, mutual information frommultiple sensors has been used to
make the decision on a particular class.

Finally, it has been shown that the proposed technique can
diagnose the defects correctly and effectively using feature vectors
extracted by applying Gabor’s spectrogram and time-embedding
method directly to the sensor response, as opposed to the differential
output (i.e., normal–abnormal) [24]. It has also been demonstrated
that the developed analysis based on mutual information from
multiple neighboring sensors is an effective way of minimizing the
possibility of false classification when coupled with a selection
criterion.

IV. SVM-Based Classifier

SVM is a machine-learning technique which constructs a
hyperplane decision boundary such that the margin of separation
between feature vectors with positive and negative labels is
maximized [40]. The SVMs provide nonlinear approximations by
mapping the input vectors into high-dimensional feature spaces
in which a separating hyperplane is constructed, and thereafter
a decision rule is established. For example, given empirical data,
f�xi; yi�gNi�1 can be categorized into 2 distinct classes based on some
prior knowledge. Here, xi represents the patterns and yi represents
the corresponding labels. For a simple problem with 2 classes, the
label yi can be used as an indicator that can hold�1 and �1 values,
depending onwhich side of the decision boundary the corresponding
pattern lies. It is not too difficult to establish the separating hyper-
plane, along with the weight vectors w and bias �, which can be
defined as

g�x� � wTx� � (1)

Further details of this method can be obtained in [36]. Here, the
weight vector defines the direction perpendicular to the separating
hyperplane and the bias term, very often termed as an offset, as the
perpendicular distance of the hyperplane from the origin, as shown in
Fig. 1. The shortest distance between a separating hyperplane and the

closest point is termed the margin of separation. The objective of the
SVMs is to find an optimal set of these parameters (w and�) such that
the margin of separation is maximized. Note that maximizing the
margin of separation to achieve optimal condition is equivalent to
minimizing the Euclidean norm of the weight vector.

A. Higher-Dimensional Mapping

Asmentioned earlier, the SVMsmap the n-dimensional vectorsw
of the input space X into a high- dimensional feature space in which
the transformed image of the input patterns are linearly separable.
This is achieved using Cover’s theorem [41], which states that a
multidimensional input space can be transformed to a feature space
in which the transformed image of the input patterns are linearly
separable, provided that the transformation is nonlinear and the
dimensionality of the feature space is high enough. The high-
dimensionality of the feature space enables the construction of a
linear separating hyperplane in the space (Fig. 2). However,
numerical optimization schemes in high dimensions would suffer
from the curse of dimensionality. Such computational complexities
can be avoided by taking advantage of the inner–product kernel, in
which the dot product in the feature map is implicitly computed by
evaluating the simple kernel, thus avoiding the explicit calculation of
the feature map.

To illustrate the concept of nonlinear transformation, it has been
assumed that the n-dimensional vectors x of the input space are
mapped into an m-dimensional feature space, and the nonlinear
transformation is represented by f�j�x�gmj�1. With a given set of

nonlinear transformation, the separating hyperplane can be
expressed as

Xm
j�1

wj�j�x� � �� 0 (2)

After some simplification and mathematical manipulation, the
decision surface in the feature space can be written as

Fig. 1 Geometric representation of separating hyperplane for two-

dimensional case.

Fig. 2 Illustration of higher-dimensional mapping for linear separa-

tion fields.
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XN
i�1

�iyi��xi�T��x� � 0 (3)

where ��xi�T��x� represents the inner product of the two vectors in
the feature space. The two vectors correspond to the input vector x
and the ith input pattern xi. The inner product kernelK�x;xi� can be
expressed as

K�x;xi� �
Xm
j�0

�j�x��j�xi� (4)

where i� 1; 2; . . . ; N denotes the number of observations of the
input patterns. Substituting Eq. (4) in Eq. (3), the separating
hyperplane can be expressed as

XN
i�1

�iyiK�x;xi� � 0 (5)

Because of its improved performance, the radial basis function
(RBF) kernel [Eq. (6)] has been used to map the input data into an
infinite-dimensional feature space. This kernel functionmakes use of
the distances between data points, and the mapping does not depend
on the position of the data set with respect to the origin. However, one
key parameter is the scaling factor � that needs to be estimated based
on specific class of data set:

K�x;xi� � exp

�
� 1

2�2
kx � xik2

�
(6)

B. Choice of Kernel Parameter

To design the SVM classifier, it is necessary to select an
appropriate kernel parameter � for each class of data. The parameter
� controls the smoothness of the kernel function and is tuned
based on the model parameter �, such that the upper bound on the
classification error is satisfied. There are several ways the parameter
� is tuned to adjust the kernel to obtain the best possible results. To
obtain the optimal value of �, the present research has adopted the
method proposed by Unnthorsson et al. [42]. In this approach, for a
preassigned value of �, the SVMmodel is trained with a given set of
data and the classification rate is plotted across a range of �. This
implies that the best possible classification accuracy that can be
achieved is 1 � �. The criterion for selecting the optimal� is to obtain
that value of � for which the fraction of the correct classification rate
of the training data first touches the highest classification accuracy
[i.e., �1 � ��%], as demonstrated by the straight line in Fig. 3, in
which the x axis and y axis represents the � variation and correct
classification rate (in percentage), respectively. The choice of the
model parameter � is typically based on an assumption of the highest
allowable fraction of misclassification of the training data. In this
work, the value of � is set to 0.05, implying that there would be 5%
classification error on the training data, as shown in Fig. 3.

C. One-Class-SVM Algorithm

One-class SVMs belong to a unique group of the SVM family in
which the training input vectors belong to one class (i.e., the class is
representative of nominal system behavior). The major difference
between one-class-SVM classifiers and other conventional clas-
sifiers lies mostly in how the classifiers have been trained. A one-
class-SVM classifier is only trained by the reference set of a data set,
and the basic assumption is that it never experienced unusual patterns
or anomalous data. The separating hyperplane between two classes is
constructed solely based on the training data set. Because a (N � 1)-
dimensional hyperplane can exist in the N-dimensional feature
space, the primary task is to find the optimal separating plane to
maximize the margin between the origin and the hyperplane.
Another important issue is to adjust the kernel width and the upper
bound on the fraction of the training error such that for a given
training data set, the separating hyperplane minimizes the mis-
classifications such as the target data rejection and acceptance of
outliers. One key feature of one-class SVMs is that themajority of the
training data points would lie on one side of the optimal hyperplane
and any test point would be evaluated using a decision function f�x�
to determine which side of the hyperplane it falls on in feature space.

Figure 4 represents the schematic overview of the one-class SVM
and its parameters to construct the optimal hyperplane for non-
separable patterns. This algorithm was first proposed by Schölkopf
et al. [43] for estimating the support vectors of a high-dimensional
distribution, and this can be achieved by solving the optimization
problem as shown in Eq. (7):

min
w;�;�;b

1

2
wTw� 1

l�

Xl
i�1
�i�� subject to hwT;��x�i����i; �i�0;

for �2�0;1� (7)

where � represents the upper bound on the fraction of the training
error, � is the nonzero slack variable, and� is the offset (Fig. 4). Using
Lagrangian, the constrained primal problem [Eq. (7)] is converted to
a dual problem that is solved by minimizing the Lagrangian function
J�w; �; �� [Eq. (8)] with respect to w and � and also maximizing it
with respect to Lagrange’s multiplier �:

J�w; �; �� � 1

2
wTw �

XN
i�1

�i�yi�wTx� �� � 1� (8)
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Fig. 3 Choosing the optimal value of the scale parameter sigma.

Fig. 4 Geometric interpretation of optimal hyperplane (one-class
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From theKarush–Kuhn–Tucker conditions and the two conditions of
optimality, the target function in the dual problem can be written as

min
�

1

2

X
i;j

�i�jK�xi;xj� subject to 0 	 �i 	
1

l�
;

X
�i � 1

(9)

Theparameter�canbe recovered forvalues of�i that satisfy thegiven
constraints in Eq. (7), and the values of ��xi� for the corresponding
nonzero �i are termed as support vectors. The decision function for a
given test vector ��y� can be expressed as

f�y� � sign

�Xl
i�1

�iK�xi; xj� � �
�

(10)

For the training data, the decision function takes the value of �1,
capturing most of the data points, and �1 elsewhere. Once the dual-
problem equation (9) is solved to obtain the support vectors, the
optimal hyperplane is constructed in the feature space. For a new test
point, the decision function evaluates which side of the hyperplane
the given test point falls into, using Eq. (10). The steps of the adopted
approach are shown in Algorithm 1.

V. Applications of One-Class SVMs

In structural health monitoring, sensor signals are analyzed to
estimate and locate the severity of defects. In general, the presence of
damage induces different attributes in the resulting wave propa-
gating through the structure. In complex structures, due to additional
scattering phenomena and system noise, detecting the presence of
these warning transients from defective members turns out to be
more complicated than anticipated. This section demonstrates the
appropriateness of SVMs as a detection tool to sense different
structural attributes and to identify these warning signals, depending
on the system state. Throughout this research, the Ohio State
University SVM classifier MATLAB Toolbox (version 3.00) has
been used for the purpose of analysis.§

A. Detecting Unusual Patterns in Structural Data

1. Problem Description

It is an established fact that the presence of damage introduces
additional nonlinearities in amedium [38]. Any type of discontinuity
in the structure will give rise to different attributes, depending on the
characteristicsof thedefect itself.Heterogeneity in themediumresults
in complex attenuation behaviors and thus induces distortion in the
wave. The presence of damage introduces these attributes in terms of
undesired attenuation, reflection components, multiple harmonics,
and high-frequency burst signals. Hence, it is important that the
developed diagnostics technique is sensitive to these surprising
patterns. In this section, the applicability of one-class SVMs to detect
unusual patterns in signals is illustratedusing two test cases. Figure5a
represents a simulated sensor signal for a healthy structure. The
simulated signal is amimicof the real-lifeLambwavepatternsandhas
been developed using attenuated and shifted versions of a basic 4.5-
cycle burst signal. The presence of the damage has been represented
by introducing additional attenuation, reflections, multiple harmonic
components, and a high-frequency burst superimposed on the
resultant wave. In addition, random noise w�n� has been introduced
to take into account experimental uncertainties. Here,

w�n� �
����
V
p

 random�N; 1�

is a random variable ofN realizations and variance V.
In test case 1 (Fig. 5b), the sensor response is assumed to have two

additional reflection components (from a defect) when compared
with the healthy response. In test case 2, the signal represents the
sensor response with two additional high-frequency burst compo-

nents, as shown in Fig. 5c. In both cases, two additional components
are introduced at the 354th and 585th sample points. The approxi-
mate locations of those additional components have been indicated
by the dotted arrow in Figs. 5b and 5c.

2. Preprocessing and Data Analysis

In wave-based methods, sensor responses are collected using a
fast-data-acquisition unit that serves as the primary source of data.
Depending on the nature of the transducer (piezoelectric, strain
gauge, etc.), the acquired signals represent the history of the variable
(voltage, strain, etc.) measured at regular intervals over time. Various
input features can be obtained from the time-domain data using
different preprocessing techniques, and these input features influence
the performance of any data-driven algorithm. In this research, the
time-embedding technique has been used to process the sensor data.
Themethod is also known as the tapped-delay approach, inwhich the
delay reconstruction provides the approximate dynamic information
[44] of the system in terms of the scalar observations, and this is a
very popular technique in the field of time-series prediction [45].
Using Taken’s theorem [39], it is possible to reconstruct the attractor
in the phase space from the scalar observations. Given the time
observation x�t�, a state vector yt can be defined as

yt � �x�t�; x�t� ��; . . . ; x�t � �Nd � 1���� (11)

where the time instant t� n=fs (fs being the sampling frequency), �
is the time delay, and Nd is the embedding dimension [45]. Further
details of this technique can be found in [46].

In the current analysis, for each time history (of 2000 sample
points), an 11-dimensional state vector is obtained using time delay
� � 1 and embedding dimension N � 11. The one-class SVM is
trained with these 11-dimensional input vectors from healthy
samples. Then the 11-dimensional input vectors corresponding to
each damaged case are tested and the corresponding labels of each
data points are checked. It is observed that themajority of the unusual
patterns in the signal from the defective cases have been labeled as
unseen data or outliers.

Figure 6 represents the plot corresponding to the analysis cor-
responding to test case 1. The plots corresponding to Figs. 6a and 6b
represents the resultant sensor signal from damaged structure and the
reflected components introduced due to the damage, respectively.
The predicted outliers are shown as peaks in Fig. 6c. Figure 7
represents a similar analysis for test case 2. In this context, it is
important to note that apart from the true predictions, the outcome
shows the presence of some false peaks that basically result from the
presence of the random noise and the nature of the input features
provided to the detection algorithm. A common practice to evaluate
the performance of such a diagnostic process is to develop a
confusion matrix that represents the level of agreement (or dis-
agreement) between the true and the predicted values. The per-
formance of the detection system to predict the presence of the
additional reflection components (in test case 1) for a single
realization has been evaluated with different levels of noise. The
confusion matrix was constructed based on the outcome of the
one-class-SVM algorithm. Figure 8 shows the trend of probability
of a false alarm as a function of noise level.

Figure 9 shows a similar plot of the trend of probability of
detection with different noise levels. A careful observation reveals
that with increasing noise level, the probability of a false alarm tends

Algorithm 1 One-class-SVM algorithm

1) Initialize model parameters: �, � (range), and training data points x.
2) For each �, � � �min; . . . ; �max.
a) Solve the dual problem to compute �i and �.
b) Return a decision f�x� on training points x.
c) Plot the classification curve.
d) Compute the optimal � value.

3) Update kernel parameter �.
4) Solve the dual problem to compute �i and �.
5) Evaluate decision function f�y� on test points y.
6) Output: correct classification rate and outliers.

§Data available online at http://svm.sourceforge.net/download.shtml
[retrieved 15 May 2009].
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to increase, whereas the probability of detection maintains a steady
decay as expected. However, the sharp fall in Fig. 9 indicates that the
probability of detection is heavily influenced by the increasing noise
level and thus deteriorates the accuracy of the detection system.

B. Classifying Defect Patterns in Integrated Diagnostics

1. Problem Statement

In this section, the use of SVMs to investigate the changes in
wave signatures in composites due to different types of damage is
presented. The goal is to extract and classify the signature charac-

teristics due to the presence of various forms of realistic defects in
composite structures so that the status of the structure can be
ascertained. The normal (zero state) and abnormal attributes are
extracted from the measured data of a structure and are analyzed to
characterize various states of the system.

2. Experimental Background

For damage quantification, experiments were conducted to obtain
the response of composite plates (Fig. 10). Each platewasmade up of
16 layers of carbon-fiber cyanate epoxy �0=90�4s laminate and was

Fig. 5 Simulated sensor signals for different test cases: a) reference sensor signal, b) sensor signal with additional reflection components, and c) sensor

signal with additional burst components. The locations of the additional components are shown with arrows.

Fig. 6 Predicted outliers corresponding to additional reflections: a) simulated sensor signals with additional reflection components, b) reflection

components, and c) peaks showing the presence of the outliers.
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manufactured using a hot press. The dimensions of each plate
are 30:5 
 5:1 cm and 0.281 cm thickness. Thunder transducers
(0:5 
 1 cm) bonded to the upper surface of the cantilever platewere
used as sensors and actuators. With the actuator mounted at the
clamped end, sensor 1 and sensor 2 were bonded at a distance of 9.5
and 19 cm, respectively, from the actuator (Fig. 10). To choose the
excitation frequency, finite element analysis (FEA) was conducted
to determine the fundamental mode shapes. The cantilevered plate
(30:5 
 5:1 
 0:281 cm) was modeled in ABAQUS with 610 finite
elements. The material properties used are

E1 � 167 GPa E2 � 8:13 GPa G12 � 8:8252 GPa

G13 � 8:73 GPa G23 � 8:73 GPa �12 � 0:27

�21 �
�
E2

E1

�
�12 � 0:013 (12)

Figure 11 shows the first six dominant modes for the cantilever
beam with no defects. The color gradient in Fig. 11 represents the
displacements profile scaled between minimum (blue) and maxi-
mum (red) values.

Table 1 shows the first six natural frequencies obtained from FEA
for both healthy and damaged plates. To simulate a damage case, a
2 cm saw cut was introduced and the location of the defect was
approximately 8.5 cm from the free end. From Table 1, it can be
observed that natural frequencies are less sensitive to the presence
of damage. Though natural frequencies and mode shapes provide

Fig. 7 Predicted outliers corresponding to high-frequency burst components: a) simulated sensor signal with additional burst components, b) burst
components, and c) peaks showing the presence of the outliers.
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Fig. 9 Probability of detection vs noise level.

Fig. 10 Experimental setup with structural dimensions and interfaces

of the composite beam.

Fig. 11 Modeled mode shapes of the cantilever beam with no defect

(refer to Fig. 10).
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global information on the system, they cannot be directly used to
detect the presence of the defects, because the characteristic length of
the damage is much smaller than thewavelength of the excitedwave.
Moreover, in wave-based techniques, the choice of the actuation
frequencies is important. It is critical to ensure that a fundamental
mode does not get excited. This is because any excitation around the

modal frequencies may result in unbounded output (displacement),
as the structure may vibrate at resonance.

As mentioned earlier, we have adopted an active diagnostics
technique for characterizing structural defects. The piezoelectric
transducer is connected to a signal generator that produces a
diagnostic signal, and this results in a localized actuation in the
composite laminate. The resultant wave fronts propagate through the
material and aremeasured by the sensors. It is important to determine
the frequency band(s) at which the injected actuation in the structure
is maximized. This would result in an improved signal-to-noise ratio
in the measured sensor response in the presence of host–structure
coupling.

Experiments were conducted on healthy composite beams in
which the surface-mounted actuator (Fig. 10)was excitedwith a 50V
peak-to-peak linear chirp signal varying from 1–100 KHz, and the
subsequent responseswere recorded from surface-mounted sensors 1
and 2. To observe the concentration of signal components over
time, the sensor responses were represented in the time–frequency
domain.

Figure 12 shows a typical time–frequency representation of the
sensor 1 response using a spectrogram. Under linear chirp actuation,
all frequency bands are excited with equal power. However, the
frequency content of the sensor responses depends on the type of
the actuator, the electromechanical coupling between the host and
structure, and the transducers and the mechanical and material
characteristics of the structure. In Fig. 12, two distinct frequency
bands (around 8 and 32 KHz) are observed from the time–frequency
plot of the sensor 1 response.

Throughout this research, a 50 V peak-to-peak 4.5-cycle tone-
burst signal with a central frequency of 8 KHz was used as the
excitation signal and sampled at 100 KHz. The time history of the
actuation signal and the associated sensor responses for a healthy
sample are shown in Fig. 13.

The investigated damages (four categories) are notches, saw cut,
drilled holes, and seeded delamination introduced at the fourth
interface from the midplane. The discrete delaminations have been
incorporated by using 2 rectangular pieces of a Teflon sheet during
the fabrication process. The other forms of defects were also intro-
duced artificially. The dimensions of the investigated defects are

Table 1 First 6 natural frequencies of the cantilever beam

with defect (saw cut) and without defect (healthy)

Frequency, Hz

Modes Healthy Damaged (saw cut) Difference, %

1 38.895 38.996 �0:25967
2 227.84 226.75 0.478406
3 243.56 233.50 4.130399
4 612.51 604.96 1.232633
5 681.26 630.30 7.480257
6 717.87 685.72 4.478527

Fr
eq

ue
nc

y 
(H

z)

Time (s)
0 1 2 3 4

x 10−3

0

2

4

6

8

10
x 104

Selected frequency (~8 KHz)

Fig. 12 Time–frequency plot of the sensor 1 response under chirp

excitation.

Fig. 13 Voltage history of the a) 4.5-cycle tone-burst actuator signal, b) response plots of sensor 1, and c) response plots of sensor 2 from the cantilever

beam with no defect.
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shown in Table 2. The fifth set of data belongs to the healthy group
that is used as reference data for comparison. To take into account the
material variability, sensor signals were collected from two identical
coupons from each group. For example, four sets of measurements
were conducted on a healthy specimen. A minimum of 10 obser-
vations were obtained from each transducer across each test bed
under the same operating condition to take into account the experi-
mental uncertainties associated with data acquisition. For classi-
fication, the data set consisted of 40 vectors from each sensor for each
category of defects. The objective was to classify the sensor signals
collected from different test beds to assist in the diagnosis of damage
based on the information from the neighboring sensors (sensor 1 and
sensor 2, as shown in Fig. 10).

3. Preprocessing: Time–Frequency-Based Approach

In the proposed scheme, the time-domain data are first down-
sampled by 4, and thereafter Gabor’s spectrogram technique [47]

(with time instants of 100, 32 frequency bins, and a Gaussian
window) is used to extract the time-varying features of the sensor
data for a single set from each category. Figures 14–18 represent the
time–frequency structures corresponding to each category of the
damaged states using spectrogram plots. Therefore, for the first set of
analysis, the sensor observation is described by 100 time-localized
coefficient vectors of length 32, which can be arranged into a one-
dimensional feature vector of length 3200. To maximize defect
information and to minimize false classification, the mutual infor-
mation of the neighboring sensors is taken into account, in which
each test case includes two sensors’ signals (sensor 1 and sensor 2, as
demonstrated in Fig. 10) and 10 observations are again obtained from
each sensor to account for experimental uncertainties.

As a result, a 20-dimensional feature vector consisting of 20 one-
dimensional vectors for each test bed is generated for each defect
condition. Therefore, a total of 100 observations corresponding
to five defect conditions (C classes) results in (3200 
 100)-
dimensional matrices S. In the analysis, 50% of the observations

Table 2 Training and test class distributions for different defects on composite materials

Defect description Training Test

Type Dimension, cm Class C Total observations Sets Observations Sets Observations

Healthy None 1 20 TRC1 10 TEC1 10
Delamination 4:5 
 5 (area) 2 20 TRC2 10 TEC2 10
Drilled holes 0.1 (diameter) 3 20 TRC3 10 TEC3 10
Notch 2.0 (width) 4 20 TRC4 10 TEC4 10
Saw cut 2.0 (length) 5 20 TRC5 10 TEC5 10
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Fig. 14 Time–frequency plot of sensor 1 signal from the cantilever

beam with no defect.
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Fig. 15 Time–frequency plot of sensor 1 signal from the cantilever

beam with delamination.
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Fig. 16 Time–frequency plot of sensor 1 signal from the cantilever

beam with a drilled hole.
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Fig. 17 Time–frequency plot of sensor 1 signal from the cantilever

beam with a notch.
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related to each condition are randomly chosen and are used as
training samples and the rest are used as the testing samples, as shown
in Table 2.

4. Preprocessing: Time-Embedding Approach

The second set of preprocessing has been done on the same data set
using the time-embedding method. The applicability of the time-
embedding method along with the one-class SVMs to detect the
presence of surprising features in structural data has been demon-
strated in the previous sections. In this research, for each time-
domain datum (of 800 sample points), an 11-dimensional state vector
is obtained using � � 1 andN � 11. Hence, a total of (790 
 2200)-
dimensional matrices S corresponding to five defect conditions
would be available for analysis. As mentioned, 50% of the obser-
vations related to each condition are randomly chosen as the training
samples and the rest are used as the test samples.

5. Selection of Appropriate Class

Table 3 presents the outcomes R using SVMs on the damage
classification using an RBF kernel. Here, Rij represents the correct
classification rate of a data set from any jth category (representing
each column) when trained with a data set from ith category
(representing each row). As mentioned earlier in the one-class-SVM
algorithm (Algorithm 1), for each training set and preassigned �, the
optimal � is calculated, and thereafter the data set assigned for testing
is evaluated to compute the correct classification rate. In the current
analysis, � is set to 0.05 and the optimal � is calculated for each
training set. Once thematrixR is calculated, the selection criteria that
two groups of signals belong to the same class is true when Rij and
Rji closely match with a high classification rate (i.e., Rij � Rji).
When one-class SVMs are trained with the jth-category data set,
most of the jth-category feature points lie on one side of the
hyperplane, but amajority of the ith-category feature points (from the
test data set) may ormay not lie on the same side of the hyperplane. If
features from a particular category do not lie on the same side of the
hyperplane, then they are from different classes. However, if they do
lie on the same side of the hyperplane, then it would be necessary to
cross check if they both still lie on the same side of the hyperplane,
when the SVM is trained with ith-category data set instead. The
geometrical interpretation for the selection criteria means that
the two hyperplanes constructed individually by ith-category and
jth-category data sets have to be very similar, such that a majority of
the feature points from both the categories lie on the same side
irrespective of the hyperplane constructed. In the present analysis, we
set the selection criteria as kRij � Rjik 	 0:05�1 � ��, which means
that to belong to the same class, the absolute difference of the correct
classification rate obtained from two sets of data must be less than or
equal to 5% of the maximum classification rate.

Once the Rmatrix is obtained, a new matrix Qk
ij is formed for the

kth sensor, such that the following criteria hold:

If kRij � Rjik 	 0:05�1 � ��
Qk
ij �Qk

ji � 1 else Qk
ij �Qk

ji � 0
(13)
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Fig. 18 Time–frequency plot of sensor 1 signal from the cantilever

beam with saw cut.

Table 3 Classification rate Rij matrix for sensor 1 and case 1 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 0.951 0.7863 0.7196 0.7210 0.6776 0.8943 0.792 0.744 0.6671 0.6663
TRC2 0.9265 0.9501 0.8260 0.8283 0.766 0.9396 0.8941 0.8535 0.7826 0.7291
TRC3 0.8950 0.8405 0.9528 0.8466 0.7425 0.9135 0.8671 0.8801 0.7780 0.7330
TRC4 0.9190 0.8746 0.8813 0.9506 0.7733 0.9255 0.9148 0.9053 0.8680 0.7661
TRC5 0.9356 0.8761 0.8745 0.8435 0.9503 0.9340 0.8940 0.8556 0.7811 0.7665
TEC1 0.8756 0.7951 0.7311 0.7181 0.6598 0.9536 0.8098 0.7406 0.6688 0.6785
TEC2 0.9166 0.8910 0.8651 0.8738 0.7845 0.9323 0.9508 0.9026 0.8205 0.7681
TEC3 0.8838 0.8160 0.8380 0.8146 0.7270 0.8886 0.8458 0.9121 0.7708 0.7101
TEC4 0.9301 0.9033 0.8875 0.9450 0.8013 0.9416 0.9290 0.9113 0.9516 0.7940
TEC5 0.9050 0.8728 0.8531 0.8393 0.7843 0.9226 0.8963 0.8618 0.8081 0.9531

Table 4 Classification rate Rij matrix for sensor 2 and case 1 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 0.9510 0.7863 0.7196 0.7210 0.6776 0.8943 0.7920 0.7440 0.6671 0.6663
TRC2 0.9265 0.9501 0.8260 0.8283 0.7660 0.9396 0.8941 0.8535 0.7826 0.7291
TRC3 0.8950 0.8405 0.9528 0.8466 0.7425 0.9135 0.8671 0.8801 0.7780 0.7330
TRC4 0.9190 0.8746 0.8813 0.9506 0.7733 0.9255 0.9148 0.9053 0.8680 0.7661
TRC5 0.9356 0.8761 0.8745 0.8435 0.9503 0.9340 0.8940 0.8556 0.7811 0.7665
TEC1 0.8756 0.7951 0.7311 0.7181 0.6598 0.9536 0.8098 0.7406 0.6688 0.6785
TEC2 0.9166 0.8910 0.8651 0.8738 0.7845 0.9323 0.9508 0.9026 0.8205 0.7681
TEC3 0.8838 0.8160 0.8380 0.8146 0.7270 0.8886 0.8458 0.9121 0.7708 0.7101
TEC4 0.9301 0.9033 0.8875 0.9450 0.8013 0.9416 0.9290 0.9113 0.9516 0.7940
TEC5 0.9050 0.8728 0.8531 0.8393 0.7843 0.9226 0.8963 0.8618 0.8081 0.9531
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Table 5 Outcome of the classifier for case 1 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 1 0 0 0 0 1 0 0 0 0
TRC2 0 1 0 0 0 0 1 0 0 0
TRC3 0 0 1 0 0 0 0 1 0 0
TRC4 0 0 0 1 0 0 0 0 0 0
TRC5 0 0 0 0 1 0 0 0 0 1
TEC1 1 0 0 0 0 1 0 0 0 0
TEC2 0 1 0 0 0 0 1 0 0 0
TEC3 0 0 1 0 0 0 0 1 0 0
TEC4 0 0 0 0 0 0 0 0 1 0
TEC5 0 0 0 0 1 0 0 0 0 1

Table 6 Classification rate Rij matrix for sensor 1 and case 2 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 0.9531 0.8367 0.8063 0.8012 0.7519 0.9265 0.8291 0.8038 0.7873 0.7519
TRC2 0.9696 0.9531 0.8645 0.9367 0.8341 0.9696 0.9278 0.8645 0.9417 0.8544
TRC3 0.9835 0.9341 0.9506 0.9746 0.9126 0.9810 0.9468 0.9354 0.9569 0.9189
TRC4 0.9696 0.8898 0.8645 0.9531 0.8329 0.9696 0.8860 0.8683 0.9341 0.8367
TRC5 1 0.9468 0.9354 0.9911 0.9519 1 0.9493 0.9392 0.9886 0.9227
TEC1 0.9494 0.8506 0.8316 0.8683 0.7949 0.9531 0.8417 0.8316 0.8443 0.7987
TEC2 0.9658 0.9215 0.8835 0.9506 0.8759 0.9645 0.9506 0.8810 0.9405 0.8835
TEC3 0.9974 0.9455 0.9341 0.9924 0.9227 0.9962 0.9493 0.9531 0.9860 0.9291
TEC4 0.9670 0.8797 0.8746 0.9582 0.8240 0.9632 0.8810 0.8784 0.9531 0.8291
TEC5 1 0.9569 0.9405 0.9949 0.9253 1 0.9594 0.9468 0.9949 0.9519

Table 7 Classification rate Rij matrix for sensor 2 and case 2 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 0.9519 0.9544 0.8873 0.9227 0.9075 0.9430 0.9557 0.8898 0.9126 0.9088
TRC2 0.8974 0.9519 0.8443 0.9050 0.8974 0.9000 0.9417 0.8519 0.8924 0.9012
TRC3 0.9670 0.9519 0.9519 0.7557 0.9075 0.9683 0.9569 0.9468 0.7189 0.9025
TRC4 0.9582 0.9873 0.8987 0.9544 0.9177 0.9607 0.9949 0.9088 0.9342 0.9113
TRC5 0.9405 0.9594 0.9569 0.9177 0.9506 0.9468 0.9594 0.9544 0.8974 0.9506
TEC1 0.9430 0.9594 0.8898 0.9265 0.9101 0.9506 0.9594 0.8924 0.9189 0.9012
TEC2 0.8126 0.9227 0.8417 0.8113 0.8746 0.8253 0.9531 0.8329 0.8025 0.8772
TEC3 0.9506 0.9354 0.9189 0.7708 0.8962 0.9443 0.9367 0.9506 0.7240 0.9000
TEC4 0.9594 0.9936 0.9050 0.9468 0.9202 0.9620 0.9987 0.9063 0.9582 0.9202
TEC5 0.9493 0.9594 0.9544 0.9215 0.9354 0.9506 0.9569 0.9594 0.9113 0.9531

Table 8 Outcome of the classifier for case 2 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 1 0 0 0 0 1 0 0 0 0
TRC2 0 1 0 0 0 0 1 0 0 0
TRC3 0 0 1 0 0 0 0 1 0 0
TRC4 0 0 0 1 0 0 0 0 1 0
TRC5 0 0 0 0 1 0 0 0 0 1
TEC1 1 0 0 0 0 1 0 0 0 0
TEC2 0 1 0 0 0 0 1 0 0 0
TEC3 0 0 1 0 0 0 0 1 0 0
TEC4 0 0 0 1 0 0 0 0 1 0
TEC5 0 0 0 0 1 0 0 0 0 1
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6. Combining Information from Sensor Pairs

For each sensor 1 (s1) and sensor 2 (s2), the Qk
ij is evaluated and

finally compared with obtainM, where

M�Qs1 \Qs2 (14)

The matrixM represents the final outcome of the classifier based on
the mutual information of the sensor pairs, and one can infer that ith-
category and jth-category data sets belong to the same group if
Mij �Mji � 1. Tables 3–5 represent the set of analysis results
(case 1) obtained using the first set of (3200 
 100)-dimensional
matrices with the time–frequency-based features (case 1) of the
sensor data. The one-to-one-classification rate for sensor 1 and
sensor 2 are given in the Rij matrix in Tables 3 and 4. Table 5
represents the outcomeM usingEqs. (13) and (14). Note that because
the classifier is not exclusively characterizing the changes in the
signature (i.e., healthy–defective), it would very often observe a
majority of common attributes in a given data set, and therefore
imposing selection criteria and mutual information [Eqs. (13) and
(14)] from multiple sensors would minimize probable false classi-
fication. It is observed that the one-class-SVM algorithm correctly
classifies classes 1, 2, 3, and 5 but is unable to categorize the notch-
type defect.

The analysis results for the data set obtained from the time-
embedding technique (case 2) are shown in Tables 6–8. The
outcomes indicate that one-class SVMs with the time-embedded
technique have better classification performance for all damaged
states compared with the time–frequency-based technique. One
possible explanation is the way the structural data set is presented as
a result of the preprocessing using the time-embedded technique
that enables one-class SVMs to separate these features in higher-
dimensional space. The final set of the classification analysis
was conducted for a data set collected from two identical coupons
of each group (defect class) to take into account the experimental
and material uncertainties associated with data acquisition and
manufacturing. A minimum of 20 vectors from each sensor for each
category of defects were selected from a pool of 40 vectors, and the
selection was based on the two data sets having the closest
distribution. In this effort, a total of (790 
 4400)-dimensional
matrices S corresponding to 5 defect conditions were processed
using the time-embedded technique. The one-class-SVM classifiers
successfully classified all the defect states and are shown in
Tables 9–11.

To experience the effectiveness and robustness of the adopted
approach, the outcome of the one-class-SVM classifier has been
compared with that of the k-nearest-neighbor algorithmwith k� 30.

Table 9 Classification rate Rij matrix for sensor 1 and case 3 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 0.9544 0.9506 0.8468 0.7860 0.8202 0.9177 0.7683 0.8696 0.7911 0.8202
TRC2 0.9594 0.9506 0.8468 0.7860 0.8202 0.9177 0.7683 0.8696 0.7911 0.8202
TRC3 0.9164 0.7189 0.9506 0.6519 0.8278 0.8797 0.7012 0.8594 0.6443 0.8240
TRC4 0.8468 0.8075 0.8632 0.9531 0.8215 0.9025 0.7025 0.8455 0.6734 0.8139
TRC5 0.8797 0.6974 0.9050 0.6607 0.9557 0.8822 0.7025 0.9139 0.5962 0.9338
TEC1 0.8012 0.6506 0.8506 0.5379 0.7569 0.9544 0.6924 0.8670 0.6468 0.8278
TEC2 0.9126 0.7620 0.8670 0.7924 0.8189 0.9594 0.9531 0.8455 0.7860 0.8215
TEC3 0.9038 0.7202 0.8835 0.6835 0.8379 0.9405 0.7303 0.9519 0.6658 0.8303
TEC4 0.8822 0.6974 0.8405 0.6645 0.8025 0.8519 0.8063 0.8519 0.9544 0.8050
TEC5 0.8278 0.6873 0.9025 0.5784 0.9030 0.8721 0.6797 0.8936 0.6177 0.9544

Table 10 Classification rate Rij matrix for sensor 2 and case 3 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 0.9519 0.9291 0.8949 0.7936 0.9202 0.9240 0.9113 0.8949 0.8012 0.9240
TRC2 0.6658 0.9506 0.6215 0.7151 0.6683 0.8379 0.8620 0.6924 0.6582 0.6063
TRC3 0.8392 0.8645 0.9531 0.7164 0.8569 0.8341 0.8860 0.8392 0.6734 0.8506
TRC4 0.8835 0.9126 0.8075 0.9544 0.8848 0.7987 0.9075 0.7949 0.7379 0.8557
TRC5 0.8493 0.8873 0.8670 0.7367 0.9506 0.8873 0.8873 0.8746 0.7215 0.8911
TEC1 0.9177 0.9063 0.8962 0.8139 0.9240 0.9531 0.9227 0.8949 0.7974 0.9202
TEC2 0.6353 0.8594 0.6886 0.6557 0.6088 0.6594 0.9557 0.6139 0.7126 0.6645
TEC3 0.8240 0.8746 0.8341 0.6582 0.8544 0.8519 0.8670 0.9506 0.7101 0.8493
TEC4 0.8139 0.9088 0.7962 0.7582 0.8721 0.8987 0.9202 0.8215 0.9557 0.8848
TEC5 0.8417 0.8873 0.8734 0.7265 0.8911 0.8683 0.8873 0.8645 0.7341 0.9531

Table 11 Outcome of the classifier for case 3 at �� 0:05

Test data

Training data TRC1 TRC2 TRC3 TRC4 TRC5 TEC1 TEC2 TEC3 TEC4 TEC5

TRC1 1 0 0 0 0 1 0 0 0 0
TRC2 0 1 0 0 0 0 1 0 0 0
TRC3 0 0 1 0 0 0 0 1 0 0
TRC4 0 0 0 1 0 0 0 0 1 0
TRC5 0 0 0 0 1 0 0 0 0 1
TEC1 1 0 0 0 0 1 0 0 0 0
TEC2 0 1 0 0 0 0 1 0 0 0
TEC3 0 0 1 0 0 0 0 1 0 0
TEC4 0 0 0 1 0 0 0 0 1 0
TEC5 0 0 0 0 1 0 0 0 0 1
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In the present study, the same data set (case 2) is preprocessed using
the time-embedded method and a total of (790 
 2200)-dimensional
matrices corresponding to 5 defect conditions are used for analysis
purposes. The training examples comprise 50% of the observations
related to each defect condition and the rest are used for validation
purposes. The comparison of the performance is based on the
classifier’s ability to correctly classify the validation set. For
example, the classifier, trained with 50% of the healthy observations,
has been evaluated against the validation set of the healthy condition.
Figure 19 represents a comparison of the correct classification rate
for one-class-SVM and k-NN algorithms for different validation
cases from both sensor 1 (Fig. 19a) and sensor 2 (Fig. 19b). It can be
seen that the one-class-SVM-based classifier performs better than the
k-NN on the validation set from each defect state.

VI. Conclusions

In this paper, we present a novel method based on one-class SVMs
to evaluate and classify induced defects in composite laminates in
terms of the changes in the signature of the resultant wave that
propagates through the anisotropic medium. The ability of the one-
class-SVM-based model to detect surprising patterns has been
demonstrated. The paper applies the time-embedded features along
with one-class SVMs to make a better detection and classification of
structural defects in the presence of material and experimental
uncertainties when compared with the method based on time–
frequency information.Moreover, this research has shown that using
multiple sensor outputs can lead to better fault characterization. In
structural health management, several decomposition techniques
(wavelet, matching pursuit decomposition, etc.) have been used to
locate the damage using time-of-flight information. However, these
decomposition techniques are computationally expensive, as they
perform a component-based analysis. Application of the developed
model (one-class SVMs) could be used to detect the unusual patterns,
and this information could further be used to localize the presence
of the outliers due to the presence of the faults, thus reducing the
computational burden. Further research will be conducted to address
some issues to increase the robustness of the current model in the
presence of material and experimental uncertainties.
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